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ABSTRACT

Interest in determinantal point processes (DPPs) is increasing in

machine learning due to their ability to provide an elegant para-

metric model over combinatorial sets. In particular, the number

of required parameters in a DPP grows only quadratically with

the size of the ground set (e.g., item catalog), while the number of

possible sets of items grows exponentially. Recent work has shown

that DPPs can be effective models for product recommendation and

basket completion tasks, since they are able to account for both the

diversity and quality of items within a set. We present an enhanced

DPP model that is specialized for the task of basket completion,

the tensorized DPP. We leverage ideas from tensor factorization in

order to customize the model for the next-item basket completion

task, where the next item is captured in an extra dimension of the

model. We evaluate our model on several real-world datasets, and

find that the tensorized DPP provides significantly better predictive

quality in several settings than a number of state-of-the art models.
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1 INTRODUCTION

Increasing the number of items in the average shopping basket is a

major concern for online retailers. While there are a wide range of

possibles strategies, this work focuses on the algorithm responsible

for proposing a set of items that is best suited to completing the

user’s current shopping basket.

Basket analysis and completion is a very old task for machine

learning. For many years association rule mining [2] has been

the state-of-the-art. Even though there are different variants of

this algorithm, the main principle involves computing the con-

ditional probability of buying an additional product by counting

co-occurrences in past observations. Due to computational cost and

robustness, modern approaches favor item-to-item collaborative
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filtering [19], or using logistic regression to predict if a user will

purchase an item based on binary purchase scores obtained from

shopping baskets [18].

As reported in the Related Work section, standard collaborative

filtering approaches need to be extended to correctly capture diver-

sity among products. Indeed, in basket completion, some form of

diversity needs to be incorporated, since recommending an item

that is too similar to other items in the basket will not be relevant

to the user. Practitioners often mitigate this problem by adding

constraints to the recommended set of items. As an example, when

using categorical information, it is possible to force the recommen-

dation of a pair of matching shoes when trousers are added to the

basket, even if natural co-sale patterns would lead to the recommen-

dation of other trousers. In this situation the presence of diversity

in the recommendations is not directly driven by the learning al-

gorithm, but by side information and expert knowledge. Ref. [28]

proposes an effective Bayesian method for learning the weights

of the categories in the case of visual search when categories are

known.

However, it may be more interesting to directly learn the ap-

propriate diversity without relying on extra information. Naive

learning of diversity directly from the data without using side in-

formation comes at a high computational cost, because the number

of possible sets (baskets) grows exponentially with the number of

items in the catalog. The issue is not trivial, even when we want to

be able to add only one item to an existing set, and becomes even

harder when we want to add more than one item with the intent of

maximizing the diversity of the final recommended set.

Refs. [9, 10] address this combinatorial problem using a model

based on determinantal point processes (DPPs) for basket com-

pletion. DPPs are elegant probabilistic models of repulsion from

quantum physics, which are used for a variety of tasks in machine

learning [17]. They allow sampling a diverse set of points, with

similarity and popularity encoded using a positive semi-definite

matrix called the kernel. Efficient algorithms for marginalization

and conditioning DPPs are available. From a practical perspective,

learning the DPP kernel is a challenge because the associated like-

lihood is non-convex, and learning it from observed sets of items is

conjectured to be NP-hard [17].

For basket completion it is natural to consider that sets are the

baskets which converted to sales. In this setting, the DPP is param-

eterized by a kernel matrix of size p × p, where p is the size of the

catalog. Thus the number of parameters to fit grows quadratically

with p, and the computational complexity for learning, prediction,

and sampling grows cubicly with p. As learning a full-rank DPP is

hard, [10] proposes regularizing the DPP by constraining the kernel

to be low rank. This regularization also improves generalization

and offers more diversity in recommendations, without hurting

predictive performance. In many settings the predictive quality is
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also improved, making the DPP a very desirable tool for model-

ing baskets. Moreover, the low-rank assumption also offers better

runtime performance compared to a full-rank DPP.

Nevertheless, because of the definition of the DPP, as described

in theModel section, this low-rank assumption for the kernel means

that any possible baskets with more items than the chosen rank will

receive a probability estimate of 0. This approach is thus impossible

to use for large baskets, and some other regularizations of the DPP

kernel may be more appropriate. Also, because of the symmetry

property of the DPP kernel, it is impossible to model ordered corre-

lations. However, the order in which items are added to a shopping

basket can play an important role in the basket completion task.

Contributions. The contributions of this paper are fourfold:

• We modify the constraints over the kernel to support large

baskets; that is, we prevent the model from returning a prob-

ability of 0 for sets larger than the rank of the kernel.

• Wemodel the probability over all baskets by adding a logistic

function on the determinant computed from the DPP kernel.

We adapt the training procedure to handle this nonlinearity,

and evaluate our model on several real-world basket datasets.

• By leveraging tensor factorization, we propose a new way

to regularize the kernel among the collection of items in

the catalog. This approach also leads to enhanced predictive

quality.

• We show that this new model, which we call the tensorized

DPP, allows us to capture ordered basket completion. That

is, we can leverage the information regarding the order in

which items are added to a basket to improve predictive

quality.

Furthermore, we show that these ideas can be combined for further

improvements to predictive quality, allowing our tensorized DPP

model to outperform state-of-the-art models by a large margin.

We begin by discussing related work. Following this, we intro-

duce our proposed model, and then proceed with an evaluation of

its effectiveness on several real-world datasets.

2 RELATEDWORK

In addition to the previously discussed work, DPPs have been used

for natural language processing in order to discover diverse threads

of documents [11], and to enhance diversity in recommender sys-

tems [6]. Unlike in our application where we learn the kernel, in

these applications the kernel is constructed using previously ob-

tained latent factors, for instance using tf-idf [11]. These latent

factors are scaled by a relevance score learned in a conventional

fashion. For example, these relevance scores may represent the pre-

dicted rating of a particular user, or the similarity between the text

in a document and the user query. Ultimately, these applications

involve sampling from the DPP specified by this kernel to find the

set with the highest probability, called Maximum At Posteriori or
MAP, where the kernel parameters trade off between relevance and

diversity. However, efficiently finding the MAP for a DPP is chal-

lenging, and this has lead to work on different sampling techniques.

Ref. [12] relies on MCMC sampling, while [6] proposes a greedy so-

lution based on Cholesky decomposition. Instead of looking for the

MAP, [13] involves looking for the Maximizing Induced Cardinality
(MIC) set, which defines the set that contains the largest number

of items with which the user will interact. Finally, [4] breaks the

symmetry assumption of DPP by introducing signed DPPs, in order

to incorporate not only repulsive but also attractive interactions

between items.

Several methods have been proposed for learning the DPP kernel

matrix. Ref. [12] uses an expectation-maximization (EM) algorithm

to learn a non-parametric form of the DPP kernel matrix. Ref. [21]

proposes a fixed-point algorithm called Picard iteration, which is

much faster than EM, but still slower than [10]. Bayesian learning

methods have also been proposed to learn the DPP kernel [1, 9].

Improving diversity in recommender systems has also been stud-

ied without the use of DPPs, including, among other work, [7,

25, 29]. For instance, [7] relies on random walk techniques to en-

hance diversity. In [25], the authors propose trading off between

the relevance of the recommendation and diversity by introducing

a coverage function to force the algorithm to produce recommen-

dations that cover different centers of the interests of each user.

Finally, the authors of [29] propose transforming the problem of

recommending items to users into recommending users to items.

They introduce a modification of nearest-neighbor methods, and a

probabilistic model that allows isolation of the popularity bias and

favors less popular items.

Regarding basket completion, associative classifiers have long

been the state-of-the-art [2], despite requiring very heaving com-

putational load for training, and manual tuning for key parameter

choices such as lift and confidence thresholds. Later work focuses on

the task of purchase prediction by adapting collaborative filtering

methods. Ref. [23] proposes a solution based on nearest-neighbor

models, while [18] relies on binary logistic regression to predict if

a user will purchase a given item. More recently, DPPs [9, 10] may

now be considered among the class of models belonging to the new

state-of-the-art for basket completion, in light of their effective-

ness both in terms of accuracy and training speed. Finally, classic

collaborative filtering models tailored for positive and unlabelled

data [14, 16] may be effectively used for basket completion.

3 MODEL

Determinantal point processes (DPPs) were originally used tomodel

a distribution over particles that exhibit a repulsive effect [30]. Re-

cently, interest in leveraging this repulsive behavior has led to

DPPs receiving increased attention within the machine learning

community. Mathematically, discrete DPPs are distributions over

discrete sets of points, or in our case items, where the model as-

signs a probability to observing a given set of items. Let I denote

a set of items, and L the kernel matrix associated with the DPP

whose entries encode item popularity and the similarity between

items. The probability of observing the set I is proportional to the

determinant of the principal submatrix of L indexed by the items in

I: P(I) ∝ detLI
1
. Thus, if p denotes the number of items in the

item catalog, the DPP is a probability measure on 2
p
(the power

set, or set of all subsets of p), while it contains only p2 parameters.

The kernel L encodes item popularities and the similarities between

items, where the diagonal entry Lii represents the popularity of

item i , and the off-diagonal entry Li j = Lji represents the similarity

1
To define a probability measure on the DPP, the normalization factor is det(L + I ),
because

∑
I det LI = det(L + I ).
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between items i and j . A determinant can be seen as a volume from

a geometric viewpoint, and therefore more diverse sets will tend to

have larger determinants. For example, the probability of selecting

two items i and j together can be computed as

P[{i, j}] ∝
�����
Lii Li j
Lji Lj j

�����
= LiiLj j − L

2

i j (1)

In equation 1 we can see that the more similar i and j are, the
less likely they are to be sampled together. The definition of the

entries Li j will therefore determine the repulsive behavior of the

kernel for the task. For instance, if similarity is defined using image

descriptors, then images of differing appearance will be selected

by a DPP. On the other hand, if the entries Li j are learned using

previously observed sets, such as e-commerce baskets [10], then

co-purchased items i and j are likely to be sampled by the DPP,

and thus the "similarity" Li j will be low. Since co-purchased items

are likely to have some diversity, DPPs are a natural choice for

modeling baskets containing purchased items. In an application

such as a search engine or in document summarization, the kernel

may be defined using feature descriptorsψi ∈ R
D
(i.e tf-idf of the

text), and a relevance score qi ∈ R
+
of each item i , such that Li j =

qiψ
T
i ψjqj , which favors relevant items (large qi ) and discourages

lists composed of similar items.

3.1 Logistic DPP

Our objective is to find a set of items that are most likely to be

purchased together. We formulate this as a classification problem,

where the goal is to predict if a specific set of items will generate

a conversion from the user, that is, all the items will be bought

together, which we denote as Y ∈ {0, 1}. We model the class label

Y as a Bernoulli random variable with parameter ϕ (I), where I is

the set of items, and ϕ is a function that we will define below:

p (y |I) = ϕ (I)y (1 − ϕ (I))1−y (2)

We model the function ϕ using a DPP.

We assume that there exists a latent space such that diverse items

in this space are likely to be purchased together. Similarly to [10],

we assume a low-rank constraint on the kernel matrix L ∈ Rp×p ,
which we factorize as follows:

L = VVT + D2
(3)

whereV ∈ Rp×r is a latent matrix, where each row vector i encodes
the r latent factors of item i .D is a diagonal matrix that, and together

with | |Vi | |, represents the intrinsic quality or popularity of each item.

The squared exponent on D insures that we always have a valid

positive semi-definite kernel. We then define ϕ (I) ∝ det(VI, :V
T
I, :
+

D2) ≥ 0. Note that without the diagonal term, the choice of r would
restrict the cardinality of the observable set, because |I | > r would
imply ϕ (I) = 0 when D ≡ 0. Using this term will ensure that the

success probability of any set will be positive, but the cross-effects

will be lower for sets of cardinality higher than r . We also see

that items with similar latent vectors are less likely to be sampled

than items with different latent vectors, since similar vectors will

produce a parallelotope with a smaller volume. To normalize the

probability and encourage separation between vectors we use a

logistic function on Φ such that:

ϕ (I ) = P(y = 1|I) � 1 − exp(−w detLI ) (4)

� σ (w detLI ) (5)

Usually the logistic function is of the form 1/(1 + exp(−w detLI )).
However, in our case the determinant is always positive, since L
is positive semi-definite, which would result in P(y = 1|I) always
greater than 0.5 with such a function. By construction, our formu-

lation allows us to obtain a probability between 0 and 1. Finally,

w ∈ R is a scaling parameter, to be chosen by cross-validation, that

insures that the exponential does not explode, since the diagonal

parameter will be approximately 1.

Learning. In order to learn the matrix V we assume the existence

of historical data {Im ,ym }1≤m≤M , where Im is a set of items, and

ym is a label set to 1 if the set has been purchased, and 0 otherwise.

This training data allows us to learn the matrices V and D by maxi-

mizing the log-likelihood of the data. To do so, we first write the

click probability for all y as

P(y |I) = σ (w detLI )
y (1 − σ (w detLI ))

1−y
(6)

The log-likelihood f (V ,D) can then be written as

f (V ,D) = log

M∏
m=1
P(ym |Im ) −

α0
2

p∑
i=1

αi ( | |Vi | |
2 + | |Di | |

2)

=

M∑
m=1

logP(ym |Im ) −
α0
2

p∑
i=1

αi ( | |Vi | |
2 + | |Di | |

2)

Following [10], αi is an item regularization weight that is inversely

proportional to item popularity. The matrices V and D are learned

by maximizing the log-likelihood using stochastic gradient ascent.

One step of gradient ascent requires the computation of the inverse

and the determinant of a symmetric matrix (LI , where I is the

considered item set for this gradient step) which can be done in

O ( f 3) or O ( f 2.373) using optimized CW-like algorithms, where f
corresponds to the number of items in I. The optimization algo-

rithm used for learning is shown in Algorithm 1. Further details on

the optimization algorithm and the gradient equations are available

in the supplementary material.

3.2 Tensorized DPP

We now propose a modification to the previously introduced model

that is better suited for the basket completion task. To do so we

enhance the logistic DPP for the basket completion scenario, where

we model the probability that the user will purchase a specified

additional item based on the items already present in the user’s

shopping basket. We formulate this using a tensor, where the goal

is to predict whether the user will purchase a given candidate

target item based on the user’s basket. Each slice of the tensor will

correspond to a candidate target item. In this setting there are as

many problems to solve as there are items in the catalog, p (minus

the items already in the basket). Learning one kernel per item to

recommend, where each item is independent from all other items,

would be impossible in practice and suffer from sparsity issues. Each

item is present in only a fraction of the baskets, and thus each kernel

will only receive a small fraction of the data to be learned. However,

all items are not completely independent from one another. Thus to

solve the sparsity issue we utilize a low-rank tensor inspired by the
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Algorithm 1 Optimization algorithm for Logistic DPP model.

Input: α0 ∈ R, β ∈ R the momentum coefficient, m ∈ N the

minibatch size, ε ∈ R the gradient step, t = 0 the iteration

counter, T = 0, past data D = {Im ,ym }1≤m≤M .

Initialization: Compute item popularity and output regulariza-

tion weights αi .
Set D0 ∼ N (1, 0.01) on the diagonal and D̃0 ≡ 0 the gradient

accumulation on D.
Set V0 ∼ N (0, 0.01) everywhere and Ṽ0 ≡ 0 the gradient accu-

mulation on V .

while not converged do

if m(t + 1) > M (T + 1) then
Shuffle D and set T = T + 1

end if

Update (Ṽt+1, D̃t+1) = β (Ṽt , D̃t ) + (1− β )ε ▽ f (Vt + βṼt ,Dt +

βD̃t )
Update Vt+1 = Vt + Ṽt+1
Update Dt+1 = Dt + D̃t+1

end while

RESCAL decomposition [24]. We use a cubic tensor K ∈ Rp×p×p ,
where each slice τ (noted Kτ ) of K is the candidate item (low-rank)

kernel. By assuming that the tensor K is low-rank, we are able to

implement sharing of learned parameters between each item, as

shown in the following equation:

Kτ = VR
2

τV
T + D2

(7)

where V ∈ Rp×r are the item latent factors that are common to all

candidates items, and Rτ ∈ R
r×r

is a candidate item specific matrix

that models the interactions between the latent components of each

candidate item. In order to balance the degrees of freedom between

candidate items and items already in the basket, we further assume

that Rτ is a diagonal matrix. Therefore, the diagonal vector of Rτ
models the latent factors of each candidate item, and the latent

factors of the item can be seen as the relevance of the product

for each latent factor. As is the case for the matrix D, the squared
exponent on Rτ ensures that we always have a valid kernel. See

Figure 1 for an illustration of the factorization. The probability that

the candidate item τ is relevant for the set of items I already in the

basket is

P(yτ = 1|I) = σ (w detKτ ,I ) = 1 − exp(−w detKτ ,I ) (8)

Therefore, the log-likelihood д(V ,D,R) � д is

д =
M∑

m=1
logP(yτ |Im ) −

α0
2

p∑
i=1

αi ( | |Vi | |
2 + | |Di | |

2 + | |Ri | |2)

where each observationm is associated with a candidate item, and

Im is the set of basket items associated with an observation. As pre-

viously described, the matricesV ,D, and (Rτ )τ ∈{1, · · · ,p } are learned
by maximizing the log-likelihood using stochastic gradient ascent.

Just as with the logistic DPP model, one step of gradient ascent

requires the computation of the inverse and the determinant of

a symmetric the matrix LI ), resulting in a O ( f 2.373) complexity

(with f the number of items in I). The algorithm used for learn-

ing is shown in Algorithm 2. Further details on the optimization

Algorithm 2 Optimization algorithm for Tensorized DPP model.

Input: α0 ∈ R, β ∈ R the momentum coefficient, m ∈ N the

minibatch size, ε ∈ R the gradient step, t = 0 the iteration

counter, T = 0, past data D = {Im ,ym }1≤m≤M .

Initialization: Compute item popularity and output regulariza-

tion weights αi .
Set D0 ∼ N (1, 0.01) on the diagonal and D̃0 ≡ 0 the gradient

accumulation on D.
Set V0 ∼ N (0, 0.01) everywhere and Ṽ0 ≡ 0 the gradient accu-

mulation on V .

Set Rτ ,0 ∼ N (1, 0.01) on the diagonal for each item and R̃τ ,0 ≡ 0

the gradient accumulation on Rτ .
while not converged do

if m(t + 1) > M (T + 1) then
Shuffle D and set T = T + 1

end if

Update

(
Ṽt+1, D̃t+1, (R̃τ ,t+1)τ

)
= β

(
Ṽt , D̃t , (R̃τ ,t )τ

)
+ (1 −

β )ε ▽ д(Vt + βṼt ,Dt + βD̃t , (Rτ ,t + βR̃τ ,t )τ )

Update Vt+1 = Vt + Ṽt+1
Update Dt+1 = Dt + D̃t+1
Update Rτ ,t+1 = Rτ ,t + R̃τ ,t+1 for all τ

end while

𝐾𝜏 𝑉= 𝑅𝜏
2

𝑉𝑇

+ 𝐷2

Candidate item 𝜏
kernel DPP

Basket items latent 
factors, common 
to all tasks

Candidate 
item 𝜏 latent 
factors

Basket items bias

Figure 1: Illustration of the decomposition of the tensorized

DPP.

algorithms and the gradient equations are available in the supple-

mentary material.

Generalization to higher-order interactions. In basket comple-

tion applications, it may be interesting to try to recommend several

items at the same time. This can be done using a greedy approach.

That is, we first complete the basket with an initial product, consider

this augmented basket (with the new product) as a new basket, and

then complete it. A more direct approach, and perhaps more suit-

able for capturing higher-order interactions between items, would

be to generalize Eq. 7. Here we propose a higher-order version

of our model, and leave performance evaluation of this model for

future work. Let d be the number of items to recommend and let

τ = {τ1, · · · ,τd } ∈ [p]
d
. We then define the kernel Kτ as:

Kτ = V
d∏
k=1

R2(d ),τd
VT + D2

(9)

where each R (d ),τd ∈ R
r×r

is a diagonal matrix.

3.3 Prediction

As discussed previously, sampling from aDPP can be a difficult prob-

lem, and various solutions have been proposed [6, 12]. Although
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sampling the best set among all possible sets has been conjectured

to be NP-hard, our goal is to find only the best item to complete

the basket. In such applications a greedy approach can be applied

effectively, particularly with the low-rank structure of our model.

In addition, [10] proposed an effective method for the basket com-

pletion scenario that involves conditioning the DPP, which can be

applied to our logistic DPP model.

4 EXPERIMENTS

We evaluate the performance of our model on the basket completion

problem on several real-world datasets, and compare to several

state-of-the-art baselines.

• Our models. To understand the impact of the different com-

ponents of our model compared to the low-rank DPP model,

we evaluated the following versions of our model:

– Logistic DPP: This version of our model is similar to

the low-rank DPP model, with the addition of the logistic

function. To determine what item to recommend we use a

greedy approach, where we select the next item such that

the probability of the basket completed with this item is

the largest. We usedw = 0.01.

– Tensorized log-DPP without bias: In this version

of the model we set D ≡ 0, which allows us to measure the

impact of capturing the item bias in a separate matrix. The

matrixV encodes the latent factors of items present in the

basket, while each matrix Rτ encodes the latent factors of

each target item τ that can be added to a basket.w = 0.01.

– Tensorized log-DPP: This is the full version of our

model, with bias enabled. We usedw = 0.01.

Our datasets do not provide explicit negative information.

To overcome this issue, similar to the approach to described

in [22], we generate negative feedback for our models from

observed baskets by sampling a random item among items

not in the basket. This approach could be improved through

better negative sampling strategies, but since this is not part

of our primary contributions we leave this investigation for

future work. Our results show that even this simple strategy

achieves very good predictive performance.

• Baselines. The primary goal of our work is to improve

state-of-the-art results provided by DPPs and introduce new

modeling enhancements to DPPs. However, for the sake of

completeness we also compare with other strong baseline

collaborative filtering models.

– Poisson Factorization (PF) [14] is a probabilistic ma-

trix factorization model generally used for recommenda-

tion applications with implicit feedback. Since our datasets

contain no user id information, we consider each basket

to be a different user, and thus there are as many users

as baskets in the training set. In practice this can cause

issues with high memory consumption, since the number

of baskets can be very large.

– Factorization Machines (FMs) [26] is a general ap-

proach that models dth-order interactions using low-rank

assumptions. FMs are usually used with d = 2, since this

corresponds to classic matrix factorization, and because

complexity increases linearly with d . Additionally, there

is no open-source FM implementation that supports d > 2.

For these reasons, we use d = 2 in our experiments. As

with PF, to learn the FM model we consider each basket as

a unique user. For fairness in comparison with our mod-

els, we also tried FM with negative sampling based on

item popularity. However, we did not see any substan-

tial improvement in model performance when using this

negative sampling approach.

– Low-Rank DPP [10] is a low-rank DPP model, suitable

for basket completion, where the determinant of the sub-

matrix of the kernel corresponds to the probability that

all the items will be bought together in a basket.

– Bayesian Low-Rank DPP [9] is the Bayesian version

of the low-rank DPP model.

– Associative Classifier (AC) is an algorithm that com-

putes the support of a purchased set of items in order to

obtain completion rules. As in [10], we used the Classifica-

tion Based on Associations (CBA) algorithm [20], available

at [8], with minimum support of 1.0% and maximum con-

fidence thresholds of 20.0%. Unlike other models, AC does

not provide estimates for all possible sets. Therefore, we

cannot compute results for some metrics used in our eval-

uation, such as MPR (described below).

– Recurrent Neural Network This RNN model [15]

is adapted for session-based recommender systems. The

RNN requires ordered sequences, and thus we only evalu-

ate this model on the Instacart dataset (described below),

where the order in which items were added to each bas-

ket is available. We use the implementation of this model

available from [27].

For all models we cross-validated different hyperparameter set-

tings, such as the number of latents factors (5, then from 10 to 60

in steps of 10, plus the size of the largest basket; for the Belgian

dataset we rounded up to 75 in our models even if the largest basket

is of size 76, since it does not reduce the performance of our models)

and regularization strength (0.01, 0.1, and 1.0), and report the best

results here. In the interest of reproducibility, all code used for our

experiments is available at [31]

DATASETS. For our basket completion experiments we use the

following four datasets. The first three datasets contain unordered

baskets, while the last dataset contains ordered baskets:

• Amazon Baby Registries is a public dataset consisting of

110, 006 registries and 15 disjoint registry categories. For the

purposes of comparison with [9], we perform two experi-

ments. The first experiment is conducted using the diaper

category, which contains 100 products and approximately

10, 000 baskets, composed of 2.4 items per basket on average.

The second experiment is performed on the concatenation

of the diaper, apparel, and feeding categories (sometimes de-

noted here as D.A.F, for Diaper+Apparel+Feedings), which

contains 300 products and approximately 17, 000 baskets,

composed of 2.6 items per basket on average. The item cate-

gories are disjoint; for example, no basket containing diaper

products will contain apparel products. This concatenation of

disjoint categories can present difficulties for classic matrix
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factorization models [9], which may prevent these models

from learning a good embedding of items.

• Belgian Retail Supermarket is a public dataset [3] that

contains 88, 163 sets of items that have been purchased to-

gether, with a catalog of 16, 470 unique items. Each basket

contains 9.6 items on average. AC cannot be trained on this

dataset because of scaling issues associated with large item

catalogs.

• UK retail dataset is a public dataset [5] that contains 22, 034

sets of items that have been purchased together, from a cata-

log of 4, 070 unique items. This dataset contains transactions

from a non-store online retail company that primarily sells

unique all-occasion gifts, and many customers are whole-

salers. Each basket contains 18.5 items on average, with

a number of very large baskets. Modeling these large bas-

kets requires using a very large number of latent factors for

the low-rank DPP, leading to somewhat poor results for this

model. This is not an issue for our model, due to the item bias

that is captured in a separate matrix. However, for purposes

of comparison, we removed all baskets containing more than

100 items from this dataset; note that the low-rank DPP still

requires 100 latent factors to model these baskets. AC could

not be trained on this dataset because it does not scale to

large item catalogs.

• Instacart is, to the best of our knowledge, the only public

dataset
2
that contains the order in which products were

added to baskets. It is composed of three datasets containing

online grocery shopping behavior for more than 200, 000

Instacart users: a “train" dataset, a “test" dataset, and a “prior"

dataset. To keep training time reasonable, we use only the

“train" dataset in our experiments, and remove items that

appear less than 15 times and baskets of size less than 3.

This results in a dataset containing 700, 052 sets of items and

10, 531 unique items.

METRICS. To evaluate the performance of eachmodel we compute

the Mean Percentile Rank and precision@K for K = 5, 10, and 20:

• Mean Percentile Rank (MPR): Given a basket B, we com-

pute the percentile rank PRiB of the held-out item, iB . Let
pi � P (Y = 1|B). Then

PRiB =

∑p
i=1 I(piB ≥ pi )

p
× 100% (10)

The MPR is the average PR over all baskets in the test set:

MPR =

∑
B∈T PRiB
|T |

(11)

where T is the set of all baskets in the test set. A MPR

of 100% means that the held-out item always receives the

highest predictive score, while a MPR of 50% corresponds to

a random sorting. Higher MPR scores are better.

• Precision@K is the fraction of test baskets where the held-

out item is in the top K ranked items.

precision@K =

∑
B∈T I(rankiB ≤ K )

|T |
(12)

Higher precision@K scores are better.

2
https://www.instacart.com/datasets/grocery-shopping-2017

We evaluated the predictive quality of our models for both un-

ordered and ordered basket completion. Recall that for unordered

baskets, there is no information regarding the order in which items

are added to baskets, while ordered baskets do contain such or-

dering structure. We use the Amazon, Belgian retail, and UK retail

datasets for our unordered basket experiments, while the Instacart

dataset is used for our ordered basket experiments. For all experi-

ments we use a random split of 70% of the data for training, and

30% for testing.

4.1 Results for Unordered Baskets

For unordered basket experiments, since there is no way to know

the last item that was added to a basket, we remove one item at

random from each basket in the test set. We then evaluate the model

prediction according to the predicted score of this removed item

using the metrics described below.

Looking at Table 1, we see that conventional collaborative filtering

models sometimes have difficulty providing good recommendations

in the basket-completion setting. Perhaps more surprising, but al-

ready described in [9], is that for the Amazon datasets, PF provides

MPR performance that is approximately equivalent to a random

model. For the Amazon diaper dataset this poor performance may

be a result of the small size of each basket (around 2.4 items per

basket on average), thus each "user" is in a cold start situation, and it

is therefore difficult to provide good predictions. Poor performance

on the diaper+apparel+feedings Amazon’s dataset may result from

the fact that, apart from the small basket size of 2.61 items on av-

erage, this dataset is composed of three disjoint categories. These

disjoint categories can break the low-rank assumption for matrix

factorization-based models, as discussed in [9]. This issue is some-

what mitigated in FM, due to the integration of an item bias into the

model. This item bias allows the model to capture item popularity

and thus provide acceptable performance in some cases.

Finally, the DPP-based models generally outperform the FM

model. This is likely due to the fact that DPP models are able to cap-

ture higher-order interactions within baskets, while FM is only able

to capture second-order interactions, since d = 2 for this model.

Low-Rank DPP vs. Tensorized DPP. We now turn to a perfor-

mance comparison between our primary baseline, the low-rankDPP

model, and our tensorized DPPmodel. From Table 1, we see that our

approaches provide a substantial increase in performance for both

Amazon datasets, with relative improvements of between 10% and

70%. One factor that accounts for this performance improvement is

that unlike the low-rank DPP, which models the probability that a

set of items will be bought together, our approach directly models

the basket completion task. In our tensorized DPP model, the extra

dimensions allow the model to capture the correlation between

each item in the basket and the target item, as well as the global

coherence of the set.

Regarding the three-category Amazon dataset, a good model

should not be impacted by the fact the all of the three categories

are disjoint. Therefore, the precision@K scores should be approxi-

mately the same for both the single-category and three-category

datasets, since we observe similar performance for each category

independently. Since the MPR is 78% for one category, the MPR on

the three-category dataset should be approximately 93%, since on
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model dataset r MPR Prec.@5 Prec.@10 Prec.@20

Associative Classifier⋆ Amazon (diaper) - - 16.66 16.66 16.66

Poisson Factorization⋆ Amazon (diaper) 40 50.30 4.78 10.03 19.90

Factorization Machines Amazon (diaper) 5 67.92 24.01 32.62 46.25

Low Rank DPP⋆ Amazon (diaper) 30 71.65 25.48 35.80 49.98

Bayesian Low Rank DPP⋆ Amazon (diaper) 30 72.38 26.31 36.21 51.51

Logistic DPP Amazon (diaper) 50 71.08 23.7 34.01 48.44

tensorized logDPP no bias Amazon (diaper) 50 77.5 32.7 45.77 61.00

tensorized logDPP Amazon (diaper) 50 78.41 34.73 47.42 62.58

Associative Classifier⋆ Amazon (D.A.F) - - 4.16 4.16 4.16

Poisson Factorization⋆ Amazon (D.A.F) 40 51.36 4.16 5.88 9.08

Factorization Machines Amazon (D.A.F) 5 65.21 10.62 16.71 24.20

Low Rank DPP⋆ Amazon (D.A.F) 30 70.10 13.10 18.59 26.92

Bayesian Low Rank DPP⋆ Amazon (D.A.F) 30 70.55 13.59 19.51 27.83

Logistic DPP Amazon (D.A.F) 60 69.61 12.65 19.8 27.86

tensorized logDPP no bias Amazon (D.A.F) 60 88.77 18.33 28.00 43.57

tensorized logDPP Amazon (D.A.F) 60 89.80 20.53 30.86 45.79

Poisson Factorization⋆ Belgian Retail Supermarket 40 87.02 21.46 23.06 23.90

Factorization Machines Belgian Retail Supermarket 10 65.08 20.85 21.10 21.37

Low Rank DPP⋆ Belgian Retail Supermarket 76 88.52 21.48 23.29 25.19

Bayesian Low Rank DPP⋆ Belgian Retail Supermarket 76 89.08 21.43 23.10 25.12

Logistic DPP Belgian Retail Supermarket 75 87.35 21.17 23.11 25.77

tensorized logDPP no bias Belgian Retail Supermarket 75 87.42 21.02 23.35 25.13

tensorized logDPP Belgian Retail Supermarket 75 87.72 21.46 23.37 25.57

Poisson Factorization UK Retail 100 73.12 1.77 2.31 3.01

Factorization Machines UK Retail 5 56.91 0.47 0.83 1.50

Low Rank DPP UK Retail 100 82.74 3.07 4.75 7.60

Bayesian Low Rank DPP† UK Retail 100 61.31 1.07 1.91 3.25

Logistic DPP UK Retail 100 75.23 3.18 4.99 7.83

tensorized log DPP no bias UK Retail 100 77.67 3.82 5.98 9.11

tensorized logDPP UK Retail 100 78.25 4.00 6.20 9.40

Table 1: [Unordered Baskets] Results for all models on all datasets. r denotes the number of latent factors. The best results for

each dataset are in bold. Models results marked with a ⋆ come directly from [9], where more baselines can be found. Other

models have been retrained for this paper with the same training and testing set sizes as [9]. † Usually the Bayesian low-rank

DPP shows little improvement over the standard low-rankDPP, however for the UK retail dataset we had to reduce the number

of samples used for learning because of high memory consumption, which may explain the poor predictive performance for

this experiment.

60 80 100
MPR

FM

Low Rank DPP

Tensorized DPP

FM

Low Rank DPP

RNN

TensorizedDPP

Tensorized DPP

0 5 10
Precision@5

0 5 10
Precision@10

0 10 20
Precision@20

Protocol 1

Protocol 2

Protocol 3

Figure 2: [Ordered Baskets] Performance of the models on Instacart dataset for the three protocols. Protocols 1, 2, and 3 corre-

spond to predicting a randomly removed item, predicting the last added itemwith last-item removal in the training set (for the

tensorized DPP), and predicting the last added item in the test set with random item removal in the training set, respectively.

By cross-validation, all models used 80 latent factors, except FM, which used 5 latent factors. The best performance is achieved

with our tensorized DPP model, particularly in protocol 2, when involves predicting the last added item; this protocol is the

closest to a real-world application.
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average for each category the target item is in the 22nd position

over the 100 items in the single-category catalog. Therefore, the

target item should be in the 22nd position over the 300 items in the

three-category catalog, resulting in a MPR of 1−22/300 = 93%. Our

models come close to these numbers, but still exhibit some small

degradation for the three-category dataset. Finally, we note that

for this dataset, a model that samples an item at random from the

right category would have a precision@20 of 20%, since there are

100 items per category. The low-rank DPP model provides close

to this level of performance. Taken together, these observations

indicate our model is robust to the disjoint category problem, and

explains the 70% relative improvement we see for our model on the

precision@20 metric. On the UK Retail dataset the improvements of

our algorithm are still substantial for precision@K , with a relative

improvement of between 20% and 30% (MPR is down by 5%). We

also observe the same decrease in MPR for our logistic DPP model,

but precision@K is similar to the low-rank DPP. On the Belgian

Retail dataset we see that all models provide similar performance.

For this dataset, baskets come from an offline supermarket, where

it is possible that customers commonly purchased similar products

at specific frequencies. Consequently it may be easy to capture

frequent associations between purchased items, but very difficult

to discover more unusual associations, which may explain why all

models provide approximately the same performance.

Logistic DPP vs. Tensorized DPP. To better understand the in-

cremental performance of our model, we focus on the results of the

logistic DPP and the tensorized log-DPP models. We see that the

logistic model does not improve over the low-rank DPP on aver-

age, indicating that the logistic component of the model does not

contribute to improved performance. However, we argue that this

formulation may still be valuable in other classification applications,

such as those with explicit negative feedback. For the tensorized

log-DPP model, we see that the version of this model without bias

is responsible for almost all of the performance improvement. Some

additional lift is obtained when capturing the item popularity bias

in a separate matrix. Since most of the gain comes from the ten-

sorized kernel, one may ask if we could use the tensorized kernel

without the logistic function and obtain similar results. We believe

that this is not the case for two reasons. First, since we are clearly

in a classification setting, it is more appropriate to use a logistic

model that is directly tailored for such applications. Second, with-

out the logistic function, each slice of the tensor should define a

probability distribution, meaning that the probability of purchasing

an additional product should sum to one over all possible baskets.

However, we could add an arbitrarily bad product that would never

be purchased, resulting in a probability of zero for buying that item

in any basket, which would break the distributional assumption.

4.2 Results for Ordered Baskets

Recall that ordered baskets contain information regarding the order

in which items are added to baskets, which may provide additional

signal for the basket completion task. To evaluate the ability of our

model to capture ordered basket completions, we performed three

experimental protocols on the Instacart dataset, which contains

ordered sequences of items added to baskets. Before introducing

the different protocols, let us recall that the low-rank DPP is trained

to capture item co-occurrence probabilities within sets, the FM

model is trained to predict whether a set of items is going to be

purchased together, and the tensorized DPP is trained to predict if

a specified target item should be added to a given set of items. Each

protocol varies in the way that we remove the item to predict from

the basket:

(1) As with previous experiments, we remove one item at ran-

dom from each basket. For the low-rank DPP and FMmodels

this item removal is performed only for baskets in the test

set. We do not remove items from baskets in the training set,

since these baskets are used to learn inter-item correlation

patterns that are applied to new baskets. For the tensorized

DPP, we perform item removal for both the training and test

sets. Item removal in the training set is appropriate for the

tensorized DPP since the removed item corresponds to the

target item for this model.

(2) We remove the last item added to each basket. For the low-

rank DPP and FM models this is done only for the test set

(since the training procedure does not include a target item),

and for the tensorized DPP this done for both the training

and test sets. Since we consider ordered sequences, we also

evaluate the RNN model using this protocol, where item

removal is done only for the test set. Since in practice the

basket completion recommendation is performed at the end

of the user session, just before the basket purchase, this

protocol corresponds to a real-world application setting.

(3) We remove one item at random from each basket in the

training set, and the last item added to each basket in the test

set. Here we evaluate only the performance of the tensorized

DPP model, since it is the only model that involves item

removal in the training set. Since the low-rank DPP and RNN

are trained on complete sets and sequences, respectively,

removing one at random from each set or sequence during

training will only result in reduced predictive performance.

If the order in which items are added into the basket contains

no signal, then for any model, the performance of protocols (2) and

(3) would be the same. However, looking at Table 2 and comparing

the tensorized DPP results for protocols (2) and (3), we see that our

model performs much better when predicting the last item added

to a basket when training is also done by removing the last item

added (protocol (3)), with MPR increasing from 80.65% in protocol

(3) to 90.07% in protocol (2), and precision@20 increasing from 9.72

to 19.97. This allows us to conclude that the order in which items

are added to the basket is important and can be captured by our

model. Next, when comparing the results of protocols (1) and (2),

we see that tensorized DPP performance is lower when the model

is trained to predict a randomly removed item than when trained

to predict the last item added (MPR of 80.46% and precision @20 of

10.51 for protocol (1)), while we see that this pattern is reversed for

the low-rank DPP (MPR of 76.46% and precision @20 of 9.23 for

protocol (1) vs MPR of 61.16% and precision @20 of 8.8 for protocol

(2)). This indicates that the low-rank DPP, although well suited

to modeling item co-occurrence probabilities, is unable to capture

ordered basket completion. Finally, we see, surprisingly, that the

RNN model does not provide good performance for this task. This

relatively poor performance may come from the fact that the basket

Research Track Paper KDD ’19, August 4–8, 2019, Anchorage, AK, USA

1612



lengths are too small in this dataset for the RNN to learn the item

sequences within baskets correctly.

5 CONCLUSION AND FUTUREWORK

In this paper we have proposed an extension of the DPP model that

leverages ideas from multi-class classification and tensor factor-

ization. While our model can be applied to a number of machine

learning problems, we focus on the problem of basket completion.

We have shown through experiments on several datasets that our

model provides significant improvements in predictive quality com-

pared to a number of competing state-of-the-art approaches, and

can appropriately capture ordered basket completion. In future

work we plan to test the performance of our proposed higher-order

method and to investigate other applications of our model, such as

user conversion prediction, attribution, and adversarial settings in

games. We also plan to investigate better negative sampling meth-

ods for positive-only and unlabelled data. Finally, we also plan to

investigate other types of loss functions, such as hinge loss, and

other types of link functions for DPPs, such as the Poisson function,

to tailor DPPs for regression problems. We believe that this work

will allow us to customize DPPs so that they are suitable for other

applications involving complex combinatorial structure.
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A SUPPLEMENTARY MATERIAL

A.1 Logistic DPP

Recall that the logistic DPP log-likelihood is:

f (V , D ) = log

M∏
m=1
P(ym |Im ) −

α0
2

p∑
i=1

αi ( | |Vi | |2 + | |Di | |
2)

=

M∑
m=1

logP(ym |Im ) −
α0
2

p∑
i=1

αi ( | |Vi | |2 + | |Di | |
2)

Optimization. We maximize the log-likelihood using stochastic

gradient ascent with Nesterov’s Accelerated Gradient, which is a

form of momentum. To simplify notation, we define [m] � Im and

σm = σ (w detL
[m]

). Let i ∈ {1, · · · ,p},k ∈ {1, · · · , r }.
lemma When D is fixed, the gradient of (13) with respect to Vik is

∂ f

∂Vik
= 2w

∑
m,i ∈[m]

([L−1
[m]

]:,iV:,k )
ym − σm

σm
detLIm

−α0αiVik (13)

Proof Without the regularization term we have

∂f
∂Vik

=
∑

m,i∈[m]

ym
σm

∂σm
∂Vik

+
1 − ym
1 − σm

(
−
∂σm
∂Vik

)
(14)

= w
∑

m,i∈[m]

ym − σm
σm

∂ det L
[m]

∂Vik
(15)

= w
∑

m,i∈[m]

ym − σm
σm

tr

(
L−1
[m]

∂L
[m]

∂Vik

)
det LIm (16)

= 2w
∑

m,i∈[m]

([L−1
[m]

]:,iV:,k )
ym − σm

σm
det LIm (17)

where (17) follows from

[
∂L

[m]

∂Vik

]

s,t
= Vskδi,t +Vtkδi,s (18)

Therefore,

tr

(
L−1
[m]

∂L
[m]

∂Vik

)
=

∑
s,t

(Vskδi,t +Vtkδi,s )[L
−1
[m]

]s,t (19)

=
∑
s
[L−1

[m]
]s,iVsk +

∑
t
[L−1

[m]
]i,tVtk

= 2

∑
s
[L−1

[m]
]s,iVsk (20)

adding the derivative of the regularization term concludes the proof.

□
lemma When V is fixed, the gradient of (13) with respect to Di is

∂ f

∂Dii
= 2w

∑
m,i ∈[m]

([L−1
[m]

]i,iDi,i )
ym − σm

σm
detL

[m]

−α0αiDii (21)

Proof As shown previously, and without the regularization term,

we have

∂f
∂Vik

= w
∑

m,i∈[m]

ym − σm
σm

tr

(
L−1
[m]

∂L
[m]

∂Di,i

)
det LIm (22)

Since,

[
∂L

[m]

∂Di,i

]

s,t
= 2Di,iδs,iδt,i

tr

(
L−1
[m]

∂L
[m]

∂Di,i

)
= 2[L−1

[m]
]i,iDi,i

adding the derivative of the regularization term concludes the proof.

□

A.2 Tensorized DPP

Recall that the tensorized DPP log-likelihood is:

д =
M∑
m

logP(yτ |[m]) −
α0
2

p∑
i=1

αi ( | |Vi | |2 + | |Di | |
2 + | |Ri | |2)

Optimization. Since each observationm is attached to a candidate

item, we denote τm as the tensor slice that corresponds to obser-

vationm. Thus we have σm = σ (detKτm,[m]
). When there is no

ambiguity, we also denote K
[m]
� Kτm,[m]

. Let i ∈ {1, · · · ,p},k ∈
{1, · · · , r }.
lemma When D and R are fixed, the gradient of (23) with respect

to Vik is

∂д

∂Vik
= 2w

∑
m,i ∈[m]

yτm − σm

σm
R2τm,k,k [K

−1
τm,[m]

]:,i

·V
:,k detKτm,[m]

− α0αiVik (23)

Proof Without the regularization term we have
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∂Vik

=
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m,i∈[m]

yτm
σm

∂σm
∂Vik

+
1 − yτm
1 − σm

(
−
∂σm
∂Vik

)
(24)
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σm

∂ detK
[m]

∂Vik
(25)
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m,i∈[m]

ym − σm
σm

tr

(
K−1
[m]

∂K
[m]

∂Vik

)
(26)

· detK
[m]

(27)

Since,

[Kτ ]s,t − D
2

s,t =

r∑
j=1

[VR2τ ]s, jVt, j =
r∑
j=1

Vs, jR
2

τ , j, jVt, j

[
∂K

[m]

∂Vik

]

s,t
= R2τ ,k,k (Vt,kδs,i +Vs,kδt,i )

Thus,

tr
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[m]
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[m]

∂Vik

)
= 2R2τ ,k,k

∑
s ∈[m]

[K−1τm,[m]
]s,iVs,k

adding the regularization term concludes the proof. □
lemma When V and R are fixed, the gradient of (23) with respect

to Di,i is

∂д

∂Di,i
= 2w

∑
m,i ∈[m]

yτm − σm

σm
[K−1tm,[m]

]i,iDi,i detKIm

−α0αiDii (28)

Proof Similarly, without the regularization term, we have

∂д
∂Di,i

= w
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σm
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Algorithm 3 Full optimization algorithm for tensorized DPP.

Input: α0 ∈ R, β ∈ R the momentum coefficient, m ∈ N the

minibatch size, ε ∈ R the gradient step, t = 0 the iteration

counter, T = 0, past data D = {Im ,ym }1≤m≤M .

Initialization: Compute item popularity and output regulariza-

tion weights αi .
Set D0 ∼ N (1, 0.01) on the diagonal and D̃0 ≡ 0 the gradient

accumulation on D.
Set V0 ∼ N (0, 0.01) everywhere and Ṽ0 ≡ 0 the gradient accu-

mulation on V .

if multitask then

Set Rτ ,0 ∼ N (1, 0.01) on the diagonal for each item and R̃τ ,0 ≡
0 the gradient accumulation on Rτ .

end if

while not converged do

if m(t + 1) > M (T + 1) then
Shuffle D and set T = T + 1

end if

if multitask then

Update

(
Ṽt+1, D̃t+1, (R̃τ ,t+1)τ

)
= β

(
Ṽt , D̃t , (R̃τ ,t )τ

)
+ (1−

β )ε ▽ д(Vt + βṼt ,Dt + βD̃t , (Rτ ,t + βR̃τ ,t )τ ) according to

formulas (23), (28) and (32)

else

Update (Ṽt+1, D̃t+1) = β (Ṽt , D̃t )+ (1−β )ε▽ f (Vt +βṼt ,Dt +

βD̃t ) according to formulas (13) and (21)

end if

Update Vt+1 = Vt + Ṽt+1
Update Dt+1 = Dt + D̃t+1
if multitask then

Update Rτ ,t+1 = Rτ ,t + R̃τ ,t+1 for all τ
end if

end while

Using (28) [
∂K

[m]

∂Di,i

]

s,t
= 2Di,iδs,iδt,i (30)

thus

tr

(
K−1
[m]

∂K
[m]

∂Di,i

)
= 2[K−1tm ,[m]

]i,iDi,i (31)

adding the regularization term concludes the proof. □
lemmaWhen V and D are fixed, the gradient of (23) with respect

to Rk,k is

∂д

∂Rτ ,k,k
= 2w

∑
m,τ ∈[m]

yτ − σm
σm

Rτ ,k,kK
−1

[m]
·V

:,k

·VT
:,k detK[m]

− α0ατ Rτ ,k,k, (32)

Proof Similarly, without the regularization term, we have

∂д
∂Rτ ,k,k

= w
∑

m,i∈[m]

yτ − σm
σm

tr

(
K−1
[m]

∂K
[m]

∂Rτ ,k,k

)
detK

[m]
(33)

(34)

Using (28) [
∂K

[m]

∂Rτ ,k,k

]

s,t
= 2Rτ ,k,kVs,kVt,k (35)

we obtain

tr

(
K−1
[m]

∂K
[m]

∂Rτ ,k,k

)
= 2Rτ ,k,k

∑
s,t∈[m]

[K−1
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]s,tVs,k (36)

·Vt,k (37)

adding the regularization term concludes the proof. □
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